مدل سازی استخراج فنل از فاضلاب با استفاده از روش های هوشمند
Authors
abstract
در این پژوهش فرایند استخراج فنل از فاضلاب با استفاده از روش های هوشمند مدل سازی شد. از روش های هوشمند شامل شبکه پرسپترون چندلایه، شبکه بر پایه توابع شعاعی و ماشین بردار رگرسیونی برای مدل سازی استفاده شد. طراحی ساختار بهینه شبکه ها از 184 مجموعه داده تجربی انجام شد. ورودی های شبکه شامل حجمی آلی به آبی، سرعت روتور، دما، ph و زمان و خروجی شبکه بازده استخراج فنل بود. برای ارزیابی عملکرد و توقف شبکه ها از ضریب تعیین و میانگین مربع خطا برای هر سه مدل استفاده شد. مقایسه نتایج کلیه مدل ها نشان داد که مدل ماشین بردار رگرسیونی با میانگین مربع خطا برابر 684/0 و ضریب بهترین مدل است. پارامترهای بهینه فرایند شامل نسبت حجمی آلی به آبی 22/0، سرعت روتور 350 دور در دقیقه، دما 86/22 درجه سلسیوس،ph برابر 7/5، زمان 86/15 دقیقه و بازده استخراج متناظر 35/96 به دست آمد.
similar resources
مدلسازی استخراج فنل از فاضلاب با استفاده از روشهای هوشمند
در این پژوهش فرایند استخراج فنل از فاضلاب با استفاده از روشهای هوشمند مدلسازی شد. از روشهای هوشمند شامل شبکه پرسپترون چندلایه، شبکه بر پایه توابع شعاعی و ماشین بردار رگرسیونی برای مدلسازی استفاده شد. طراحی ساختار بهینه شبکهها از 184 مجموعه داده تجربی انجام شد. ورودیهای شبکه شامل حجمی آلی به آبی، سرعت روتور، دما، pH<stron...
full textشبیهسازی استخراج فنل از فاضلاب با حلال تری بوتیل فسفات با استفاده از شبکه عصبی
در این تحقیق از شبکه های عصبی برای پیش بینی راندمان استخراج فنل با استفاده از حلال تری بوتیل فسفات استفاده شده است. متغیرهای ورودی شبکه شامل نسبت حجمی آلی به آبی، سرعت روتور، دما، اسیدیته و زمان بوده و متغیر خروجی شبکه کارائی استخراج فنل انتخاب گردید. برای آموزش و ارزیابی شبکه عصبی از 184 داده تجربی استفاده شده است. برای به دست آوردن ساختار بهینه شبکه مورد نظر از شبکه با تعداد لایهها و نرن ها...
full textشبیه سازی استخراج فنل از فاضلاب با حلال تری بوتیل فسفات با استفاده از شبکه عصبی
در این تحقیق از شبکه های عصبی برای پیش بینی راندمان استخراج فنل با استفاده از حلال تری بوتیل فسفات استفاده شده است. متغیرهای ورودی شبکه شامل نسبت حجمی آلی به آبی، سرعت روتور، دما، اسیدیته و زمان بوده و متغیر خروجی شبکه کارائی استخراج فنل انتخاب گردید. برای آموزش و ارزیابی شبکه عصبی از 184 داده تجربی استفاده شده است. برای به دست آوردن ساختار بهینه شبکه مورد نظر از شبکه با تعداد لایه ها و نرن های...
full textمدل سازی تغییرات کیفی روغن کنجد طی فرآیند استخراج با استفاده از سیستم های هوشمند و رگرسیونی
کنجد یکی از مهم ترین دانه های روغنی با ارزش تغذیه ای و عملکردی بالا در دنیا می باشد. بنابراین مدل سازی و بررسی رابطه بین عواملی که می تواند بر کیفیت روغن کنجد استحصال شده تأثیرگذار باشد، حائز اهمیت است. در این پژوهش، شبکه های عصبی مصنوعی (ANN) و سیستم استنتاج عصبی - فازی سازگار (ANFIS) برای پیش بینی کیفیت روغن کنجد استخراج شده به روش پرس مورد استفاده قرار گرفت. مدل به دست آمده از شبکه عصبی مصنو...
full textمدل سازی بارش رواناب با استفاده از مدل های هوشمند هیبریدی
بارش-رواناب یکی از فرایندهای مهم در مطالعات منابع آب بشمار میرود. در این تحقیق فرآیند بارش-رواناب روزانه در حوضه آبریز بالیخلوچای با استفاده از ماشین بردار پشتیبان، شبکه های عصبی مصنوعی، هیبرید موجک-ماشین بردار پشتیبان و هیبرید موجک-شبکه عصبی مورد مطالعه و مقایسه قرار گرفته است. داده های بارش-رواناب روزانه در طول دوره آماری (1379-1387) برای آموزش و صحتسنجی مدل ها مورد استفاده قرار گرفت. د...
full textکمینه سازی اضافه حفاری ناشی از انفجار در تونل ها با استفاده از روش های هوشمند
ایجادپدیدهی حفر بیش از اندازه مقطع تونل یا همان اضافهحفاری مقطع تونل در مراحل اجرایی پروژههای تونلسازی، همواره از مهمترین مسائلی است که ذهن متصدیان فنی و اجرایی این پروژهها را به خود معطوف داشته است. امروزه با توجه به پیشرفت صنعت و ورود فنّاوریهای نوین به صنعت تونلسازی و پذیرفته شدن تدریجی، روش های جدیدی جایگزین روش های سنتی (حفاری و آتشکاری) شده است. اگرچه تا حد زیادی مسئله ایجاد حفاری ...
full textMy Resources
Save resource for easier access later
Journal title:
فصلنامه علمی- پژوهشی آب و فاضلابPublisher: مهندسین مشاور طرح و تحقیقات آب و فاضلاب
ISSN 1024-5936
volume
issue مقالات آماده انتشار 2016
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023